THE "VINYLOGOUS SESQUIFULVALENE" SYNTHESIS, CYCLOADDITION-REACTIONS

Horst Babsch and Horst Prinzbach* Chemisches Laboratorium der Universität, 78 Freiburg, BRD

(Received in UK 5 December 1977; accepted for publication 23 December 1977)

Our interest in cyclic cross-conjugated polyenes of the type (1) has been renewed in view of the preparative and theoretical aspects of the electrocyclisation reactions of their vinylogues (2) and (3). In the series (2) the "vinylogous pentapulvalene" (2a) ${ }^{2)}$ and the "vinylogous heptafulvalene" (2b) ${ }^{3}$) are known; synthesis and electrocyclisation resp. of the "vinylogous sesquifulvalene" (2c) ${ }^{4}$) are subject of this and the following communication ${ }^{5}$).

(1)

(2)

(3)

$$
\text { (a), } m=n=2 \quad(b), m=n=3 \quad(c), m=2 \quad n=3
$$

The synthesis consists of the reaction sequence $(4) \longrightarrow(7) \longrightarrow(8) \longrightarrow(9) \longrightarrow$ (2c) and was patterned after a model study leading to the highly reactive (lc), in which advantage was taken of the recently discovered isomerisation (4) \longrightarrow (5) 6) (5), in contrast to its valence isomer tropone, selectively andergees $1,2-a d d i t i o n s ~ t o ~ t h e ~$ carbonyl group. Condensation with cyclopentadiene in $5 \% \mathrm{~K} 0 \mathrm{H} / \mathrm{methanol}\left(0^{\circ} \mathrm{C}, 12 \mathrm{~h}\right)$ yields the fulvene (6) (orange crystals, m.p. $86^{\circ} \mathrm{C}$ (dec.), $\lambda_{\text {max }}$ (pentane) $=396 \mathrm{~nm}(e=340), 351$ (sh, 12500), 337 (25600), 325 (27300), 312 ($s h, 20300$) , which is quantitatively isomerised to (lc) under standard conditions ($\mathrm{AgBF}_{4} /$ ether $/ 0^{\circ} \mathrm{C}$ or $\lambda>280 \mathrm{~nm}$). The transformation $(4) \rightarrow(7)\left(m, p, 52^{\circ} C\right.$), which is difficult because of the pronounced acidsensitivity of the tetracyclic skeleton, is achieved in 65\% yield by addition of lithinmethylidenecyclohexylamine ${ }^{7}$) (ether, $20^{\circ} \mathrm{C}, 4 \mathrm{~h}$), careful dehydration over molecular sieves ($20^{\circ} \mathrm{C}, 3 \mathrm{~d}$) and hydrolysis on filtration through silica gel. The thermal step $(7) \longrightarrow(8)\left(\mathrm{CH}_{3} \mathrm{CN}, \mathrm{t}_{1} / 2^{\left(130^{\circ} \mathrm{C}\right)} \mathrm{ca}\right.$. 30 min$)$ proceeds faster and more uniformly than in the case of (4), resulting in a mixture of 55-60 \% 8-formylmethylenetricyclo [4.1.0.0 $0^{2,7}$]heptene (8) (E/Z ca. $1: 1$, b.p. $67-70^{\circ} \mathrm{C} / 0.05$ torr), $1-3$ \& 8-formylheptafulvene $(10)^{8)}$ and $5-10 \%$-formylmethylenebicyclo[3.2.0]hepta-3,6-diene. After separation on silica gel (ether/pentane 7:3), (8) is condensed with cyclopentadiene (5 \% $\mathrm{KOH} /$ methanol, $\mathrm{O}^{\circ} \mathrm{C}$) to give an E / Z-mixture of (9) ($\mathrm{Al}_{2} \mathrm{O}_{3}$ (bas.), $80-85 \%$, orange
crystals, w.p. $50-60^{\circ} \mathrm{C}, \lambda_{\text {max }}($ pentane $\left.)=378 \mathrm{~nm}(\mathrm{sh}), 370,355,330\right)$, which is quantitatively opened to (2c) (violet crystals (pentane $-70^{\circ} \mathrm{C}$)) by treatment with $\mathrm{AgBF}_{4}\left(0^{\circ} \mathrm{C}\right)$. As expected, the analogous reactions of (10) (conveniently obtained from (7) and AgBF_{4}) with cyclopentadiene produces ouly small quantities of (2c) (at best 10\%). Another alteruative approach to (2c)-catalytic ($\mathrm{PdI}_{2}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sb}\right]_{2}$) opening of (7) to give (11), conversion into (12) (m.p. $64^{\circ} \mathrm{C}\left(\right.$ dec.)) and photochemical isomerisation ${ }^{9}$) of (12)-fails
table: ${ }^{1} H(T)$ and ${ }^{13} \mathrm{C}$ NMR data(δ) of compounds (2c), (7) - (9) and (12).

(2c) ${ }^{\text {a }}$	```3.23, 3.35, 3.38, 3.46, 3.67, 3.89, 3.97, 4.37, 4.7-4.9(4H); 147.2, 144.9, 142.6, 134.6, 133.6, 133.6, 132.9, 132.3, 132.1, 131.2, 130.2, 125.8, 123.0, 118.3 ppm.```
(7) ${ }^{\text {b }}$	$0.22,3.72,7.71,7.82(2 H), 7.88(2 H), 8.27 ; J_{4,8}=0.7, J_{8,9}=8.0 \mathrm{~Hz} ;$ 191.4, 177.4, 121.1, 27.4, 21.8(2c), 21.5, 20.4(2C) ppm.
$(8 \mathrm{E})^{\mathrm{c}}$	$\begin{aligned} & 0.09,3.80,4.18,4.35,7.79,7.84(2 H), 8.23 ; \mathrm{J}_{1,2}=\mathrm{J}_{2,7}=2.3, \mathrm{~J}_{1,6}=\mathrm{J}_{6,7}= \\ & 2.3, \mathrm{~J}_{2,4}=1.2, \mathrm{~J}_{2,6}=4.0, \mathrm{~J}_{4,5}=9.5, \mathrm{~J}_{4,6}=1.2, \mathrm{~J}_{4,5}=1.2, \mathrm{~J}_{5,6}=4.9, \mathrm{~J}_{5,8}= \\ & 1.4 \mathrm{~Hz} . \end{aligned}$
$(8 \mathrm{z})^{\mathrm{c}}$	$\begin{aligned} & 0.14,4.19,4.35,4.69,6.67,7.79(2 H), 8.16 ; J_{1,2}=J_{2,7}=2.3, J_{1,6}=J_{6,7}= \\ & 2.3, J_{2,4}=1.4, J_{2,6}=4.0, J_{2,8}=1.3, J_{4,5}=9.8, J_{4,6^{=1.4}, J_{5,6}=4.9 \mathrm{~Hz} .} \end{aligned}$
(9E) ${ }^{\text {b }}$	$\begin{aligned} & 2.87,3.4-3.6(5 \mathrm{H}), 3.71,3.83,7.11,7.37(2 \mathrm{H}), 7.5-7.6 ; \mathrm{J}_{1,2}=\mathrm{J}_{2,7}=2.4, \\ & \mathrm{~J}_{1,6}=\mathrm{J}_{6,7}=2.4, \mathrm{~J}_{2,4}=1.5, \mathrm{~J}_{2,6}=4.0, \mathrm{~J}_{4,5}=9.0, \mathrm{~J}_{4,6}=1.5, \mathrm{~J}_{4,8}=1.0, \mathrm{~J}_{5,6}= \\ & 4.5, \mathrm{~J}_{5,8}=1.5, \mathrm{~J}_{8,6}=12.5 \mathrm{~Hz} . \end{aligned}$
$(9 \mathrm{z})^{b}$	$2.87,3.4-3.6(5 \mathrm{H}), 3.90,4.24,6.58,7.39(2 \mathrm{H}), 7.5-7.6 ; \mathrm{J}_{1,2}=\mathrm{J}_{2,7}=2.4$, $J_{1,6}=J_{6,7}=2.4, J_{2,4}=1.5, J_{2,6}=4.0, J_{2,8}=1.0, J_{4,5}=9.0, J_{4,6}=1.5, J_{5,6}=$ 4.5 Hz .
(12)	$3.0-3.1(4 \mathrm{H}), 3.17,3.52(2 \mathrm{H}), 3.58,3.80,4.54,5.70,6.09 ; \mathrm{J}_{8,6} \mathrm{l}^{\prime} 11.9 \mathrm{~Hz}$.

completely in the last step.
The structure and fulvenoid character of (2c) were established from the spectroscopic data. In the electron spectrum (absorption begins around 800 nm) the longest Favelength maximum $\left(\lambda_{\text {max }}(\right.$ pentane $)=450 \mathrm{~mm}(\mathrm{sh}, \mathrm{m}=21000), 424$ (41000), 414 (41000)) loses its fine structure and is slightly bathochromically ahifted in polar solvents $\left(\lambda_{\text {max }}(\text { ethanol })=417 \mathrm{~nm}(\varepsilon=43000), \lambda_{\text {max }}(\text { acetonitrile })=430 \mathrm{~nm}(e=41500)\right)^{10)}$. Chemical
 in the ${ }^{l}{ }_{H}$ and ${ }^{13} C$ NMR spectra (table) are in accord with expectation $2,3,11$). The sterically plausible, not necessarily planar s-trans-conformation is indicated by anisotropy effects (e.g. upon $2-H, 2^{\prime}-H$) and $J_{6,}, 8=13.0 \mathrm{~Hz}$. The most intensive peaks
 $\left(M^{+}-2,73\right)$.
(2c) can be atored at $-70^{\circ} \mathrm{C}$; on standing at $20^{\circ} \mathrm{C}$ or upon warming slowly it mostly
polymerises. When rapidly heated to $130^{\circ} \mathrm{C}$, however, it clearly shows melting behaviour and the melt consists of (2c), polymeric material and dihydrocyclohept[e]indenes 5).

(II)
(12)

The latter arise from electrocyclisation (discussed in the following paper), which sets in, even though very slowly, at $20^{\circ} \mathrm{C}$ in solution.

To elucidate the stereochemistry of this process knowledge about the reactivity of (2c) towards dienophiles was required. TCNE (2.5 eq .) is added instantaneously at $0^{\circ} \mathrm{C}$ in a [4+2]- and [8+2]- fashion to the fulvene- and heptafulvene-portions resp. to give

a mixture of isomers of (13). Reaction with dimethyl acetylenedicarborylate is still slew at $80^{\circ} \mathrm{C}\left(\mathrm{t}_{1 / 2}\right.$ electrecyclisation ca. 12 min$)$ but with a 500 foldexcess ca. 30 ;
of the isomeric species (14) are isolated and can then be oxidised (MnO_{2}) to yield the azulene-derivative (15) (m.p. $93^{\circ} \mathrm{C}$).

Financial support from the "Deutsche Forschungsgemeinschaft" and the "Fonds der Chemischen Industrie" is gratefully acknowledged.

1) Cyclic cross-conjugated bond systems, part 33.-part 32: H. Prinzbach, H. Sauter, H. -G. Hörster, H.-H. Limbach, L. Knothe, Liebigs Ann. Chem. 1977, 869.
2) H. Sauter, H. Prinzbach, Angew. Chem. 84, 297 (1972); Angew. Chem., Int. Ed. Engl. 11, 296 (1972); H. Sauter, B. Gallenkamp, H. Prinzbach, Chem. Ber. 110, 1382 (1977); M. Neuenschwander, R. Vögeli, H.-P. Fahrni, H. Lehmann, J.-P. Ruder, Helv. Chim. Acta 60, 1073 (1977).
3) S. Kuroda, M. Oda, Y. Kitahara, Angew. Chem. 85, 93 (1973); Angew. Chem., Int. Ed. Engl. 12, 76 (1973).
4) Several derivatives of (2c) with five- or seven-membered rings totally substituted and unlikely to be cyclisable, have been described: H.J. Lindner, K. Hafner, M. Römer, B.v. Gross, Liebigs Ann. Chem. 1975, 731; cit. lit.
5) H. Prinzbach, H. Babsch, D. Hunkler, following communication.
6) H. Prinzbach, H. Babsch, H. Fritz, Tetrahedron Lett. 1976, 2129; very recently we have extended this reaction and synthesised (17) (trans-(3c)) ($\lambda_{\text {max }}$ (acetonitrile) $=458 \mathrm{~nm}$) starting from the aldehyde (16) (m.p. $61^{\circ} \mathrm{C}$) (0. Schweikert, H. Prinzbach) 。

7) G. Wittig, H. -D. Frommeld, Chem. Ber. 97, 3548 (1964).
8) M. Oda, Y. Kitahara, Chem. Ind. (London), 1969, 920.
9) For examples see H. Prinzbach, H. Sauter, Tetrahedron Lett. 1974, 3049.
10) We thank R. Jensen and Prof. Dr. J. Michl for PPP-calculations, which will be discussed in the full paper.
11) W.K. Schenk, R. Kyburz, M. Neuenschwander, Helv. Chim. Acta 58, 1099 (1975); R. Hollenstein, A. Mooser, M. Neuenschwander, W. v. Philipsborn, Angew. Chem. 86, 595 (1974); Angew. Chem., Int. Ed. Engl. 13, 551 (1974); L. Knothe, H. Prinzbach, Liebigs Ann. Chem. 1977, 687.
